
Highly Configurable Transaction Management for
Embedded Systems

Mario Pukall,Thomas Leich, Martin Kuhlemann, and Marko Rosenmueller
School of Computer Science, University of Magdeburg

P.O. Box 4120
D-39016 Magdeburg, Germany

{pukall,leich,kuhlemann,rosenmueller}@iti.cs.uni-magdeburg.de

ABSTRACT
Embedded systems are an important field of research and
will gain momentum in the near future. Many of these sys-
tems require data management functionality. Due to the
resource constraints in embedded environments a high cus-
tomizability of the data management functionality is re-
quired that depends on the application context. Whereas
storage methods and index structures can be designed to
be customizable, the fine grained modularization of trans-
action management remains problematic. The strong inter-
action of transaction management functionality with other
data management components makes it difficult to sepa-
rate it from the remaining system. In this paper we in-
troduce an approach for the development of highly config-
urable transaction management systems. The main focus of
our approach is the modularization of parts of the transac-
tion management using advanced programming paradigms.
We will show that Aspectual Mixin Layers, a combination
of feature-oriented and aspect-oriented programming is the
appropriate technique to implement a highly configurable
transaction management.

1. INTRODUCTION
Embedded computer systems are important for many in-

dustries and their use will increase in the future. For in-
stance, many capabilities of modern automobiles are moni-
tored or even completely controlled by embedded systems.
Along with the increasing functionality to control and mon-
itor these embedded systems a growing amount of data has
to be processed. A survey by Volvo states that the amount
of data in an automobile increases by 7 to 10 percent each
year [8]. A high specialization of these embedded systems
implies varying requirements regarding the data manage-
ment. Current database management systems are usually
less specialized and provide a lot more functionality than
needed. Whereas certain index methods or optimizing strate-
gies are configurable, it is almost impossible to replace and
tailor transaction management components.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop ACP4IS ’07 March 12-13, 2007 Vancouver, British Columbia,
Canada
Copyright 2007 ACM 1-59593-657-8/07/03 ...$5.00.

In this paper we present a prototypical implementation
of a highly configurable transaction management system in-
cluding concurrency control and recovery management. Al-
though research is done in this direction the crosscutting
nature of the code in respect of the transaction manage-
ment prohibited a modular and configurable implementation
in recent approaches. Due to current developments in the
software engineering domain, the modularization of trans-
action management becomes promising. Tešanović et al.
proposes the application of aspect-oriented programming
(AOP) to implement transaction management for COMET
DBMS [7]. AOP is known to have limited extensibility of
modules and does not provide adequate modularization of
crosscutting concerns [22, 20]. These issues cause the AOSD
evolution paradox and thus decrease reusability of aspect-
oriented source code [23]. Other well known problems re-
gard the preparation of the object-oriented code for the
application of aspects [13]. Feature-oriented programming
(FOP) is another modularization technique that emerged
concurrently to AOP [3, 5]. Since FOP lacks implementing
homogenous and advanced crosscutting concerns, it is not
the appropriate technique to be used in embedded environ-
ments. Furthermore, AOP and FOP have different strengths
and weaknesses. Thus, we propose aspectual mixin layers
(AML) that combine both approaches [22]. In this paper
we evaluate AML by extending a storage manager with a
transaction management system.

• We will show that AML support the development of
modular and extensible transaction management sys-
tems.

2. SOFTWARE ENGINEERING
BACKGROUND

The modularization of program functionality has been
a subject of software engineering research for decades. In
this context, FOP and AOP are currently discussed inten-
sively. Both methods adopt the paradigm of object-oriented
programming and extend the existing software structuring
methods in different ways.

2.1 Feature-Oriented Programming
FOP studies the modularity of features in product lines. A

feature in this context is an increment in program functional-
ity [5]. The idea of FOP is to synthesize software (individual
programs) by composing features (a.k.a. feature modules).
Typically, features refine the content of other features in an
incremental fashion. Hence, the term refinement refers to

the set of changes a feature applies to a code base. Adding
features incrementally, called stepwise refinement, leads to
conceptually layered software designs. For simplicity, we use
the terms feature and feature module synonymously.

Mixin layers is one approach to implement features [24, 5].
The basic idea is that features are seldomly implemented by
single classes (or aspects). Typically, a feature implements
a collaboration [17], which is a collection of roles represented
by mixins that cooperate to achieve an increment in program
functionality.

FOP aims at abstracting and explicitly representing such
collaborations. Hence, it stands in the long line of prior
work on object-oriented design and role modeling [9].

1L

L

L

2

3

C C CA B C

Figure 1: Stack of three mixin layers.

A mixin layer is a module that encapsulates fragments
of several different classes (roles) so that all fragments are
composed consistently. Figure 1 depicts a stack of three
mixin layers (L1−L3) in top down order. These mixin layers
crosscut multiple classes (CA −CC). White boxes represent
classes or mixins; gray boxes denote the enclosing feature
modules; filled arrows refer to mixin-based inheritance [10]
for composing mixins.

2.2 Aspect-Oriented Programming
AOP aims at separating and modularizing crosscutting

concerns [11]. Using object-oriented mechanisms, crosscut-
ting concerns result in tangled and scattered code [11, 12].
The idea of AOP is to implement crosscutting concerns as
aspects where the core (non-crosscutting) features are im-
plemented as components. Using pointcuts and advice, an
aspect weaver glues aspects and components at join points.
Pointcuts specify sets of join points in aspects and compo-
nents, advice defines code that is applied to (or executed
at) these points, and introductions (a.k.a. inter-type decla-
rations) inject new members into classes. With aspects, a
programmer is able to refine a program coherently at mul-
tiple join points. Typically, aspects introduce new members
to existing classes and extend existing methods. Figure 2
shows two aspects (A1, A2) that extend three classes at
multiple join points (dashed arrows denote aspect weaving)
in classes (CA − CC).

2

C

1

A

A B

A

C C C

Figure 2: Two aspects extend three classes.

2.3 Symbiosis of Aspects and Features
Aspects and features in their current incarnation are in-

tended for solving problems at different levels of abstrac-
tion [16, 14, 22]. Whereas aspects in AspectJ act on the
level of classes and objects in order to modularize crosscut-
ting concerns, features act on an architectural level. That
is, a feature decomposes an object-oriented architecture into
a composition of collaborations.

Figure 3: Feature-driven decomposition of an
aspect-oriented architecture (features are depicted
light-gray).

However both, AOP and FOP, are able to modularize
crosscutting concerns and have their specific strength and
weaknesses [16, 22]. Homogeneous crosscutting concerns
represent functionality that causes similar or even equal
source code elements that are distributed over large parts of
a software. Implementing those homogeneous crosscuts with
FOP results in replication of source code fragments. Con-
trary AOP handles these concerns in an effective way and
avoids code replication. Another type of crosscutting con-
cern are heterogeneous concerns that change existing source
code in different ways. While this kind of concern can be
easily implemented with FOP it results in a complex and
incoherent implementation when using AOP since mostly
multiple aspects and an introduction of classes is necessary.
Furthermore, problems arise if considering the evolution of
AOP approaches [23].

Hence the next logical step is to combine both approaches
by decomposing aspect-oriented architectures (i.e., object-
oriented architectures with aspects) and include them into
features. Figure 3 shows an aspect-oriented architecture on
the left and features that decompose and structure this ar-
chitecture on the right. With this decomposition, a feature
encapsulates fragments of classes and aspects that collabo-
rate together to implement an increment in program func-
tionality. Note that the original aspect was split into two
pieces (a base and a subsequent refinement).

2.4 Aspectual Mixin Layers
Aspectual Mixin Layers integrate AOP and FOP. AML

extends the notion of mixin layers by encapsulating both
mixins and aspects (see Fig. 4).

inheritance

mixin−based inheritance

weaving

association aspect

class, mixin

Figure 4: Aspectual Mixin Layers.

That is, an AML encapsulates both collaborating classes
and aspects that contribute to a feature. An AML may
refine a base program in two ways: (1) by using common
mixin-composition or (2) by using aspect-oriented mecha-
nisms, in particular pointcuts and advice. The most im-
portant contribution of AML is probably that programmers
may choose the appropriate technique – mixins or aspects –
that fits a given problem best.

Figure 5: FOP and Aspectual Mixin Layers.

Figure 5 shows a modified representation of FOP and
AML that we use in the remainder of this paper. For sim-
plicity inheritance relations are omitted and classes that are
not refined are explicitely displayed as rectangles with dot-
ted lines (e.g., Class 1 in Feature C).

2.5 FeatureC++
The combination of FOP and AOP via AML is realized in

FeatureC++1. It is a feature-oriented extension to the pro-
gramming language C++ that also allows the use of AML
based on AspectC++2. For a detailed introduction to Fea-
tureC++ we refer to [21]. The following case study imple-
mentation is based on FeatureC++.

3. RELATED WORK
In the past, there have been few attempts to adopt the

idea of modularization to transaction management. The so-
lutions discussed in this paper should, as representatives of
different classes, illustrate the general problems occurring in
this area of research [15].

With KIDS [15], Geppert et. al describe an approach
to organize the concerns of DBMS within components, that
are combined to a complete DBMS after their configura-
tion. Tešanović et al. [6] describe with COMET-DBMS a
toolkit-based DBMS, whose elements are functional software
units, which can be recombined for each individual applica-
tion. Especially specific transaction management functions
are encapsulated in (a few) aspects in this approach (Figure
6).

The PLENTY-system, developed by Hasse, describes a
kernel-based approach of a configurable DBMS [2]. The
problem of this approach ist that it requires detailed knowl-
edge of the system to create customized DBMS.

1http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/
2http://aspectc.org

5 The Architecture of COMET 6

User
Interface

Component

Transaction
Management
Component

User
Interface

Component

Index
Management
Component

Concurency-
Control Aspect

Logging and
Recovery

Aspect

Transaction
Management
Component

Scheduler
Management
Component

Memory
Management
Component

Legend:

Provided
Interface

Required
Interface

Lock
Management
Component

Checkpointing
and Recovery
Component

Concurrency-Control

Logging and Recovery

Fig. 4: The Architecture of COMET

The second step was to extract components from these activities, and we found that ac-
tivity 1 to 5 was candidate components, since these activities are well defined and isolated.
Furthermore, the use of these components, assembled together, would result in a functional
database management system. The limitations on such a database would be that it could
not handle concurrent transactions, as well as recovery.

In the third step, concurrency controlling and logging/recovery management were iden-
tified as aspects, because both influences, i.e., crosscuts, several components.

However, in both the case of concurrency control and in the case of logging/recovery,
there are parts of these activities that can be viewed as isolated activities. In the concur-
rency control management, a lock-manager is an isolated activity that was considered best
implemented as a component. In the logging and recovery management, making periodic
checkpoints, and recover a restarted system also is considered isolated activities, and was
therefore implemented into the checkpointing and recovery component. These two com-
ponents however, are optional, since they are not needed if the system does not use the
corresponding aspect.

The resulting architecture of COMET, which is shown in figure 4, show all components
and their interrelations in the architecture. Furthermore, the concurrency control, and log-
ging/recovery aspects, as well as which components each aspect affects is shown. Since it
is possible to have multiple transaction-types in a DBMS simultaneously it is possible to
have multiple types of user interface components and transaction management components
in the architecture.

By using this architecture, COMET will have a high degree of flexibility, and tailorabil-
ity. All components in the system are exchangeable, so that a particular algorithm can be
used in a particular activity, e.g., data indexing, transaction management, user interface
management, memory management, etc. Furthermore, it is possible to extend the func-
tionality of the DBMS by applying an aspect, such as concurrency control, or logging and
recovery. This implies that COMET can consist only of the functionality needed by the
application, and thereby minimizing the DBMS footprint.

Figure 6: Architecture of COMET-DBMS.

The main problem of all these approaches is the insuffi-
cient configurability. In each approach, the portfolio of func-
tional units only includes a few unspecific modules leaving
little space for the development of highly customized solu-
tions. Therefore we have to focus on the scalability using
FOP and AOP in conjunction.

4. A CONFIGURABLE TRANSACTION
MANAGEMENT SYSTEM

Components designed on the basis of FOP and AOP should
allow the creation of extensively configurable transaction
management systems as part of a DBMS. This requires the
identification of the main features of transaction manage-
ment. The aim is to choose the granularity of the compo-
nents which encapsulates these features in a way, that each
module fulfills a unique task (functionally identical modules
with alternative implementations are also possible). This
ensures adequate configurability.

4.1 Identification of Modules
Figure 7 illustrates an extract of the identified features.

The initial layer represents a storage manager (SM). Ex-
cluding any other feature, we consider the storage manager
as a minimal DBMS. Later enhancements of non transaction
specific modules (like storage manager) are still possible. For
instance we added locking functionality to the storage man-
ager when we decided to provide 2-phase lock protocols as
functions of transaction management (Figure 7 - layer BLS).

The second mixin layer (BS - base scheduler) provides
basic functions of a transaction management system. This
layer represents the minimum functionality of a transaction
system. The following feature modules extend this basic fea-
ture with additional functions of classic transaction manage-
ment systems like concurrency control and recovery. Since
each component, starting with SM (storage manager) in-
cluding BRM (basic recovery manager) introduces unique
program code (heterogeneous crosscutting concerns), we rec-
ommend the usage of FOP.

The two lower layers illustrated in Figure 7 are AML
which include the logging capabilities. The aspect calls the
logging method of class LogList and affects different parts
of each type of the class Scheduler. Encapsulating recurring
and distributed calls of the logging method (homogeneous
crosscutting concern) in aspects (Figure 7 - layers LRM,
LRMP) offers the advantage of central maintenance of log-

Figure 7: Extract layer architecture of the prototype.

ging functionality.
The first AML (Figure 7 - LRM) implements basic logging

in combination with recovery functionality and is refined in
AML LRMP that provides physical logging in addition.

In total, 13 features (10 Mixin Layers, 3 AML) have been
identified and implemented for the transaction management.
The 3 AML include the basic logging aspect, the physical
and the logical logging (implemented as refinements of the
basic aspect LRM). The components modeled here only in-
clude a few very interesting parts of transaction management
and do currently not create a complete transaction system.

4.2 Implementation
As shown in the design of the layer model (Figure 7) the

combined feature- and aspect-oriented implementation is a
good solution as transaction management addresses hetero-
geneous as well as homogeneous crosscutting concerns. In
the following we will describe the implementation of the
study using a few examples.

Features. One of the main elements within the imple-
mented prototype of the transaction management system is
the class Scheduler. Figure 8 shows an extract of the class
definition for the basic scheduler. In addition to the con-
structor definition it includes several method definitions to
insert and parse transaction operations. In one of the fol-
lowing refinement steps the functionality of the 2-phase lock
protocol is added to the scheduler. Figure 9 shows the cor-
responding class definition. The refinement is stated by the
word refines (Line 1).

Aspects. The implemented aspect of the prototype en-
capsulates the commitment of the log entry and calls the
methods provided by the class LogList. The class Scheduler
requires a log entry each time a transaction operation has
been committed. That is why each protocol (serial, lock-
based, etc.) which is called to commit a schedule has to
implement the logging call. If these are implemented with
FOP each corresponding method of class Scheduler has to

1 class Scheduler {
2 public:
3 /*Scheduler -Constructor */
4 Scheduler ();
5 /*Input -Schedule */
6 TransOpStack* getInput ();
7 void setInput(TransOpStack *);
8 void addInput(TransOp *);
9 /* transaction vector */

10 vector <Transaktion >* parseOps ();
11 };

Figure 8: Basic Scheduler (BS)

1 refines class Scheduler {
2 public:
3 /*2Phase -Lock Protocol */
4 void _2PL ();
5 };

Figure 9: Scheduler with 2-phase lock protocol
(2PLP)

be extended by hand. Figure 10 shows an extract of the
implementation of the basic aspect. Lines 7 to 11 define the
Pointcut at which the advice code (Line 16) is woven in.
That is the call of the method schedule pop(...). The As-
pectC++ keywords result(...), that(...), and args(...) help
to get information about the environment into which the
advice code is woven.

In [20], Apel et. al describe how to add new functions
to the aspect code using stepwise refinement. Figure 11
illustrates the extension of the log entry to include status
information (physical log). First the code of the basic aspect
is executed (Line 4). This is followed by the calculation of
the extension (indicated in Line 5).

4.3 Rule-Based Program Composition

1 aspect Logging {
2 virtual void logExecution(TransOp* n,
3 Scheduler* s, TransOpStack* t){
4 /*call of LogList methods */
5 }
6 /* Pointcut */
7 pointcut log(TransOp* n, Scheduler* s,
8 TransOpStack* t)
9 =execution

10 ("% Scheduler :: schedule_pop ()")
11 && result(n)&& that(s)&& args(t);
12 /* Advice */
13 advice log(n, s, t): after
14 (TransOp* n, Scheduler* s,
15 TransOpStack* t){
16 logExecution(n, s, t);
17 }
18 };

Figure 10: Aspect logging (LRM).

1 refines aspect Logging {
2 void logExecution(TransOp* n,
3 Scheduler* s, TransOpStack* t){
4 super :: logExecution(n, s, t);
5 /* storing After/Before -Image */
6 }
7 };

Figure 11: Refinement physical log (LRMP).

The composition of concrete software products using FOP
is done by selecting the required features. These features
are specified in so-called composition equations [5]. The
composition follows design rules that define dependencies
between selected features. Composition equations can be
incomplete3 which results in a non-functioning transaction
management system. To prevent this, it is necessary to
identify the interdependencies of each layer (Mixin Layer,
Aspectual Mixin Layer) with all remaining layers and to
record it within a control equipment for an automated check
of the validity of each composition equation [4]. The auto-
mated validation of program compositions is an important
part within the overall concept, since only on this basis it is
possible to design effective highly configurable transaction
management systems. This ensures a lasting improvement
of the configurability and reusability of systems created this
way.

5. EVALUATION
In the last section we have presented a prototypical imple-

mentation of a simple transaction management system us-
ing AOP, FOP, and their combination AML. To analyze the
expected benefits regarding configurability, reusability, and
resource consumption we will now evaluate the developed
prototype. We will also analyze the profit of the combina-
tion of AML.

Configurability and Reusability. FOP allows an easy
generation of a concrete software by simply selecting the re-
quired features. This leads to a number of possible configu-
rations based on the existing features and their dependencies
that are expressed in design rules. Figure 12 shows a tree

3E.g., a component is missing, whose functionality is re-
quired by other components.

of combinations that illustrates the valid configurations for
our prototype. The following symbols are used:

• AddOn - child optional selectable (operator of addi-
tion)

• P - power set over included layer

• x - cartesian product over included layer

• exor - exclusive OR

• \ - Difference

Figure 12: Tree of combinations.

The calculation of the number of valid configurations is
based on the idea that each path in the tree, starting with
the root node (Storage Manager – SM), corresponds to a
valid configuration and each visited node provides additional
functionality that corresponds to a feature. In our case the
minimal possible program is represented by the root node
(SM) and implements a storage management system of a
DBMS. To simplify the illustration some features have been
combined into a single node. The calculation of the number
CT of valid and reasonable program compositions is based on
the rules of set theory and results in the following equation:

CT = 2 + (4) + (15 ∗ (3)) + (4)) + (15 ∗ (3)) + (4) = 104

Based on only 13 features this value is a remarkable result
and proves that the developed system provides a high level
of configurability. If using the developed modules virtually
every case scenario can be handled with a highly customized
program composition. This is especially important in em-
bedded environments, since resources are very constrained
and applications have varying requirements towards a data
management system.

Contrary, the existing approaches mentioned in section 3
allow only restricted configuration for complete DBMS. Fig-
ure 12 also illustrates the high reusability of the individual
components since many of them can be used in different
program configurations.

Resources. Based on high configurability a minimal size
of a data management application can be achieved. Figure
13 illustrates this benefit that is essential for resource con-
straint environments. A functionally complete transaction
system consisting of 13 features results in a binary size of
273 kilobyte. In contrast to this a system which only allows
serial execution of transactions requires only 57.8 kilobyte.
In general, the fine-grained configurability of the prototype
allows to reduce the size of the binary code for every appli-
cation that does not require a functionally complete trans-
action management system.

Figure 13: Size of binary code of a system using
complete transaction management (273 KB) and a
system with serial scheduling (57.8 KB).

AOP vs. FOP. Transaction management functional-
ity crosscuts large parts of a data management system and
leads to entangled source code. Tešanović et al. showed
that AOP can be used to separate transaction management
functionality and to achieve configurability [7]. But AOP is
also known to have deficits regarding the modularization of
crosscutting concerns [1, 14, 18] and FOP is often the better
alternative to implement heterogeneous crosscuts [19].

With the implementation of our prototypical transaction
management system we could demonstrate that FOP is an
adequate technique to implement transaction management
functionality with fine-grained customizability. We imple-
mented 13 features and found that only 3 of them contained
homogeneous crosscuts. This underlines that most of the
source code can be implemented via FOP. To implement the
homogeneous crosscuts we used the AML approach with one
aspect that was refined in two subsequent features.

The vast use of FOP naturally results from the fact that
the implementation of new features requires the writing of
new program code which is so specific that it is only used
once within the program [19]. In our case even the logging of
the transaction execution is not entirely implemented as an
aspect, but as a combination of features and aspects. The
aspect code is mostly limited to method calls for writing
log entries since these occur in large parts of the program.
Hence, AOP cannot be abandoned since the implementation
of homogeneous crosscutting concerns via FOP results in
code replication.

In contrast to a pure AOP implementation our approach
increases the modularity of the implemented features by
combining aspects and classes that correspond to one fea-
ture. Furthermore the bounding of aspects to already exist-
ing source code enhances the evolvability [20]. Thus AML
allow to benefit from both, AOP and FOP, while avoiding
some of their deficits.

6. CONCLUSION
This article focused on the possibilities to modularize trans-

action management as a part of complex DBMS’s in order to
achieve high configurability and reusability. We have shown
this by implementing a customizable transaction manage-
ment system. The used approach to combine FOP and
AOP provides an elegant solution, that allows the attempted
modularization and reusability of the transaction manage-
ment system. We examined 13 features including 3 AML
in the prototype implementation of selected components of
a transaction management system. Based on the devel-
oped components, 104 functionally different configurations
can be derived using the established design rules. Thus a
highly customized system can be provided for virtually ev-
ery case scenario which preserves the resources of embedded
systems. In addition, we revealed that transaction manage-
ment mainly addresses heterogeneous crosscutting concerns
which have to be implemented using FOP. The remaining
homogeneous crosscutting concerns (logging) can be imple-
mented with AML, thereby increasing modularity and im-
proving evolvability unlike the exclusive use of AOP.

7. REFERENCES
[1] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza,

C. Lucena and A. v. Staa. Modularizing Design
Patterns with Aspects: A Quantitative Study. In
Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD). ACM
Press, 2005.

[2] C. Hasse. Inter- und Intratransaktionsparallelität in
Datenbanksystemen: Entwurf, Implementierung und
Evaluation eines Datenbanksystems mit Inter- und
Intratransaktionsparallelität. PhD thesis, Departement
of Computer Science, ETH Zürich, 1995.

[3] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), Lecture Notes in Computer Science.
Springer, 1997.

[4] D. Batory. A Tutorial on Feature Oriented
Programming and the AHEAD Tool Suite. In
Generative and Transformational Techniques in
Software Engineering, International Summer School
(GTTSE), 2006.

[5] D. Batory, J.N. Sarvela and A. Rauschmayer. Scaling
Step-Wise Refinement. In Proceedings of the 25th
International Conference on Software Engineering
(ICSE). IEEE Computer Society, 2003.

[6] D. Nyström, A. Tešanović, C. Norström and J.
Hansson. The COMET Database Management
System. Technical report, Mälardalen University,
2003.

[7] D. Nyström, A. Tešanović, C. Norström and J.
Hansson. COMET: A Component-Based Real-Time
Database for Automotive Systems. In Proceedings of
the Workshop on Software Engineering for Automotive
Systems at 26th International Conference on
Softwareengineering (ICSE), Edinburgh, Scotland,
2004. IEEE Computer Society Press.

[8] D. Nyström, A. Tešanović, C. Norström, J. Hansson
and N-E. B̊ankestad. Data Management Issues in
Vehicle Control Systems: A Case Study. In

Proceedings of the 14th Euromicro Conference on
Real-Time Systems (ECRTS), 2002.

[9] F. Steimann. On the Representation of Roles in
Object-Oriented and Conceptual Modeling. Data and
Knowledge Engineering (DKE), 2000.

[10] G. Bracha and W. R. Cook. Mixin-Based Inheritance.
In Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) and the European
Conference on Object-Oriented Programming
(ECOOP). ACM Press, 1990.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C.V. Lopes, J.-M. Loingtier and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer
Science. Springer, 1997.

[12] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[13] K. Gybels and J. Brichau. Arranging Language
Features for More Robust Pattern-Based Crosscuts. In
Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD). ACM
Press, 2003.

[14] K. J. Lieberherr, D. Lorenz and J. Ovlinger.
Aspectual Collaborations – Combining Modules and
Aspects. The Computer Journal, 46(5), 2003.

[15] K.R. Dittrich and A. Geppert. Component Database
Systems, 2000.

[16] M. Mezini and K. Ostermann. Variability
Management with Feature-Oriented Programming and
Aspects. In Proceedings of the International
Symposium on Foundations of Software Engineering
(FSE). ACM Press, 2004.

[17] M. VanHilst and D. Notkin. Using Role Components
in Implement Collaboration-based Designs. In
Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). ACM Press, 1996.

[18] R. Lopez-Herrejon, D. Batory and C. Lengauer. A
Disciplined Approach to Aspect Composition. In
Proceedings of the International Symposium on Partial
Evaluation and Semantics-Based Program
Manipulation (PEPM). ACM Press, 2006.

[19] S. Apel and D. Batory. When to Use Features and
Aspects? A Case Study. In Proceedings of ACM
SIGPLAN 5th International Conference on Generative
Programming and Component Engineering (GPCE),
2006.

[20] S. Apel, C. Kästner, T. Leich, and G. Saake. Aspect
Refinement. Technical Report 10, School of Computer
Science, University of Magdeburg, Germany, 2006.

[21] S. Apel, M. Rosenmüller, T. Leich and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proceedings of
the International Conference on Generative
Programming and Component Engineering (GPCE),
volume 3676 of Lecture Notes in Computer Science.
Springer, 2005.

[22] S. Apel, T. Leich and G. Saake. Aspectual Mixin
Layers: Aspects and Features in Concert. In

Proceedings of the International Conference on
Software Engineering (ICSE). ACM Press, 2006.

[23] T. Tourwé, J. Brichau and K. Gybels. On the
Existence of the AOSD-Evolution Paradox. In
Workshop on Software-Engineering Properties of
Languages for Aspect Technologies (SPLAT), 2003.

[24] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 2002.

